Issue 21, 2018

Comparison of riboflavin-derived flavinium salts applied to catalytic H2O2 oxidations

Abstract

A series of flavinium salts, 5-ethylisoalloxazinium, 5-ethylalloxazinium, and 1,10-ethylene-bridged alloxazinium triflates, were prepared from commercially available riboflavin. This study presents a comparison between their optical and redox properties, and their catalytic activity in H2O2 oxidations of sulfide, tertiary amine, and cyclobutanone. Reflecting the difference between the π-conjugated ring structures, the flavinium salts displayed very different redox properties, with reduction potentials in the order of: 5-ethylisoalloxazinium > 5-ethylalloxazinium > 1,10-ethylene-bridged alloxazinium. A comparison of their catalytic activity revealed that 5-ethylisoalloxazinium triflate specifically oxidises sulfide and cyclobutanone, and 5-ethylalloxazinium triflate smoothly oxidises tertiary amine. 1,10-Bridged alloxazinium triflate, which can be readily obtained from riboflavin in large quantities, showed moderate catalytic activity for the H2O2 oxidation of sulfide and cyclobutanone.

Graphical abstract: Comparison of riboflavin-derived flavinium salts applied to catalytic H2O2 oxidations

Supplementary files

Article information

Article type
Paper
Submitted
12 Apr 2018
Accepted
08 May 2018
First published
09 May 2018

Org. Biomol. Chem., 2018,16, 3999-4007

Comparison of riboflavin-derived flavinium salts applied to catalytic H2O2 oxidations

T. Sakai, T. Kumoi, T. Ishikawa, T. Nitta and H. Iida, Org. Biomol. Chem., 2018, 16, 3999 DOI: 10.1039/C8OB00856F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements