Issue 31, 2014

New multi-target-directed small molecules against Alzheimer's disease: a combination of resveratrol and clioquinol

Abstract

Alzheimer's disease (AD) is currently one of the most difficult and challenging diseases to treat. Based on the ‘multi-target-directed ligands’ (MTDLs) strategy, we designed and synthesised a series of new compounds against AD by combining the pharmacophores of resveratrol and clioquinol. The results of biological activity tests showed that the hybrids exhibited excellent MTDL properties: a significant ability to inhibit self-induced β-amyloid (Aβ) aggregation and copper(II)-induced Aβ aggregation, potential antioxidant behaviour (ORAC-FL value of 0.9–3.2 Trolox equivalents) and biometal chelation. Among these compounds, (E)-5-(4-hydroxystyryl)quinoline-8-ol (10c) showed the most potent ability to inhibit self-induced Aβ aggregation (IC50 = 8.50 μM) and copper(II)-induced Aβ aggregation and to disassemble the well-structured Aβ fibrils generated by self- and copper(II)-induced Aβ aggregation. Note that 10c could also control Cu(I/II)-triggered hydroxyl radical (OH˙) production by halting copper redox cycling via metal complexation, as confirmed by a Cu–ascorbate redox system assay. Importantly, 10c did not show acute toxicity in mice at doses of up to 2000 mg kg−1 and was able to cross the blood–brain barrier (BBB), according to a parallel artificial membrane permeation assay. These results indicate that compound 10c is a promising multifunctional compound for the development of novel drugs for AD.

Graphical abstract: New multi-target-directed small molecules against Alzheimer's disease: a combination of resveratrol and clioquinol

Supplementary files

Article information

Article type
Paper
Submitted
14 May 2014
Accepted
13 Jun 2014
First published
13 Jun 2014

Org. Biomol. Chem., 2014,12, 5936-5944

New multi-target-directed small molecules against Alzheimer's disease: a combination of resveratrol and clioquinol

F. Mao, J. Yan, J. Li, X. Jia, H. Miao, Y. Sun, L. Huang and X. Li, Org. Biomol. Chem., 2014, 12, 5936 DOI: 10.1039/C4OB00998C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements