Issue 21, 2004

Synthesis of 11C-labelled N,N′-diphenylurea and ethyl phenylcarbamate by a rhodium-promoted carbonylation via [11C]isocyanatobenzene using phenyl azide and [11C]carbon monoxide

Abstract

The reaction with phenyl azide and [11C]carbon monoxide to give N,N′-diphenyl[11C]urea and ethyl phenyl[11C]carbamate has been studied with the aim of development of a new methodology for carbonylation using [11C]carbon monoxide with high specific radioactivity. The synthesis of 11C-labelled N,N′-diphenylurea from phenyl azide and [11C]carbon monoxide, with 1,2-bis(diphenylphosphino)ethane-bound Rh(I) complex at 120 °C at a pressure of 35 MPa in the presence of aniline was accomplished in 82% trapping efficiency and 82% conversion yield. This approach was also useful for the synthesis of ethyl phenyl[11C]carbamate with lithium ethoxide as a nucleophilic reagent giving 90% trapping efficiency and 76% conversion yield. These reactions can be considered to proceed via a [11C]isocyanate or a [11C]isocyanate-coordinated Rh complex to give the corresponding 11C-products. This protocol provides the chemical basis for the synthesis of [11C]urea and [11C]carbamate derived from [11C]isocyanates.

Graphical abstract: Synthesis of 11C-labelled N,N′-diphenylurea and ethyl phenylcarbamate by a rhodium-promoted carbonylation via [11C]isocyanatobenzene using phenyl azide and [11C]carbon monoxide

Article information

Article type
Communication
Submitted
18 Jun 2004
Accepted
01 Sep 2004
First published
13 Sep 2004

Org. Biomol. Chem., 2004,2, 3063-3066

Synthesis of 11C-labelled N,N′-diphenylurea and ethyl phenylcarbamate by a rhodium-promoted carbonylation via [11C]isocyanatobenzene using phenyl azide and [11C]carbon monoxide

H. Doi, J. Barletta, M. Suzuki, R. Noyori, Y. Watanabe and B. Långström, Org. Biomol. Chem., 2004, 2, 3063 DOI: 10.1039/B409294E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements