Issue 6, 2003

In the first proven SN2′ fullerene reaction, both C3 and C1 C60F36 hydrolyse to C1 isomers of C60F35OH that eliminate HF to give epoxides C60F34O; C60F36O oxides are shown to be ethers, and a fourth isomer of C60F36 exists

Abstract

On standing in organic solvents containing traces of water, C3 and C1 isomers of C60F36 slowly convert to C1 isomers of C60F35OH. Both fluorofullerenols eliminate HF during EI mass spectrometry to give C60F34O epoxides, one fullerenol being much less stable than the other to the extent that the mass spectrum shows only the epoxide. Both C60F35OH isomers have C1 symmetry, one being identified by the remarkable linear relationship between chemical shifts in its 19F NMR spectrum and those in the spectrum of C1 C60F36; the spectrum of the other shows the pattern of C3 C60F36 rendered asymmetrical by the replacement of one F by OH. The reactions are facilitated by the presence of isolated double bonds, and provide the first proven examples of an SN2′ reaction of a fullerene derivative. Our observation explains why only a limited number of fluorines are readily replaced in C60F36 and why C60F18 is by contrast much more resistant to hydrolysis. We have isolated also a pure isomer of C60F36O, which is shown to be an oxahomofullerene (ether) apparently derived from C1 C60F36, and an impure fraction comprising a fourth isomer of C60F36, a trifluoromethyl derivative of C60F36, a second isomer of C60F36O, and an unknown species of 1392 u.

Graphical abstract: In the first proven SN2′ fullerene reaction, both C3 and C1 C60F36 hydrolyse to C1 isomers of C60F35OH that eliminate HF to give epoxides C60F34O; C60F36O oxides are shown to be ethers, and a fourth isomer of C60F36 exists

Supplementary files

Article information

Article type
Paper
Submitted
04 Oct 2002
Accepted
29 Jan 2003
First published
24 Feb 2003

Org. Biomol. Chem., 2003,1, 1026-1033

In the first proven SN2′ fullerene reaction, both C3 and C1 C60F36 hydrolyse to C1 isomers of C60F35OH that eliminate HF to give epoxides C60F34O; C60F36O oxides are shown to be ethers, and a fourth isomer of C60F36 exists

A. G. Avent, A. K. Abdul-Sada, B. W. Clare, D. L. Kepert, J. M. Street and R. Taylor, Org. Biomol. Chem., 2003, 1, 1026 DOI: 10.1039/B209760P

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements