Issue 16, 2018

Achieving highly practical capacitance of MnO2 by using chain-like CoB alloy as support

Abstract

The practical performance of MnO2 as a capacitor material is limited mainly by its poor electronic conductivity. Arranging MnO2 on the conductive backbone to form a unique hierarchical nanostructure is an efficient way to enhance its capacitor performance. Herein, a hierarchically core–shell structure, in which thin γ-MnO2 sheets are grown on amorphous CoB alloy nano-chains (CoB@MnO2), is produced via a simple and scalable solution-phase procedure at room temperature. A specific capacitance of 612.0 F g−1 is obtained for the CoB@MnO2 capacitor electrode at a discharge current density of 0.5 A g−1, a value higher than those obtained for other conductive materials supported MnO2 electrodes reported in the literature. A rate retention value of 60.9% of its initial capacitance is obtained when the discharge current density increased by 12-fold. It is found that after 6000 charge–discharge cycles at 2 A g−1, the specific performance of CoB@MnO2 is 86.5%. The excellent capacitor performance of CoB@MnO2 is explained to be due to the hierarchical core–shell structure, in which the CoB alloy nano-chain backbone provides a transport pathway for the electron, and the porous MnO2 outer layers provide the channel for mass transfer, hence allowing further exposure to active sites. The combination of high capacitor performance and low-cost synthesis makes the core–shell CoB@MnO2 a promising cathode material for alkaline electrolyte supercapacitors.

Graphical abstract: Achieving highly practical capacitance of MnO2 by using chain-like CoB alloy as support

Supplementary files

Article information

Article type
Paper
Submitted
04 Feb 2018
Accepted
21 Mar 2018
First published
26 Mar 2018

Nanoscale, 2018,10, 7813-7820

Achieving highly practical capacitance of MnO2 by using chain-like CoB alloy as support

J. Yan, H. Wang, S. Ji, B. G. Pollet and R. Wang, Nanoscale, 2018, 10, 7813 DOI: 10.1039/C8NR01004H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements