Issue 13, 2018

Full imitation of synaptic metaplasticity based on memristor devices

Abstract

Neuromorphic engineering is a promising technology for developing new computing systems owing to the low-power operation and the massive parallelism similarity to the human brain. Optimal function of neuronal networks requires interplay between rapid forms of Hebbian plasticity and homeostatic mechanisms that adjust the threshold for plasticity, termed metaplasticity. Metaplasticity has important implications in synapses and is barely addressed in neuromorphic devices. An understanding of metaplasticity might yield new insights into how the modification of synapses is regulated and how information is stored by synapses in the brain. Here, we propose a method to imitate the metaplasticity inhibition of long-term potentiation (MILTP) for the first time based on memristors. In addition, the metaplasticity facilitation of long-term potentiation (MFLTP) and the metaplasticity facilitation of long-term depression (MFLTD) are also achieved. Moreover, the mechanisms of metaplasticity in memristors are discussed. Additionally, the proposed method to mimic the metaplasticity is verified by three different memristor devices including oxide-based resistive memory (OxRAM), interface switching random access memory, and conductive bridging random access memory (CBRAM). This is a further step toward developing fully bio-realistic artificial synapses using memristors. The findings in this study will deepen our understanding of metaplasticity, as well as provide new insight into bio-realistic neuromorphic engineering.

Graphical abstract: Full imitation of synaptic metaplasticity based on memristor devices

Supplementary files

Article information

Article type
Paper
Submitted
10 Jan 2018
Accepted
20 Feb 2018
First published
21 Feb 2018

Nanoscale, 2018,10, 5875-5881

Full imitation of synaptic metaplasticity based on memristor devices

Q. Wu, H. Wang, Q. Luo, W. Banerjee, J. Cao, X. Zhang, F. Wu, Q. Liu, L. Li and M. Liu, Nanoscale, 2018, 10, 5875 DOI: 10.1039/C8NR00222C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements