Jump to main content
Jump to site search

Issue 36, 2017
Previous Article Next Article

Morphology of a self-doped conducting oligomer for green energy applications

Author affiliations

Abstract

A recently synthesized self-doped conducting oligomer, salt of bis[3,4-ethylenedioxythiophene]3thiophene butyric acid, ETE-S, is a novel promising material for green energy applications. Recently, it has been demonstrated that it can polymerize in vivo, in plant systems, leading to a formation of long-range conducting wires, charge storage and supercapacitive behaviour of living plants. Here we investigate the morphology of ETE-S combining the experimental characterisation using Grazing Incidence Wide Angle X-ray Scattering (GIWAXS) and atomistic molecular dynamics (MD) simulations. The GIWAXS measurements reveal a formation of small crystallites consisting of π–π stacked oligomers (with the staking distance 3.5 Å) that are further organized in h00 lamellae. These experimental results are confirmed by MD calculations, where we calculated the X-ray diffraction pattern and the radial distribution function for the distance between ETE-S chains. Our MD simulations also demonstrate the formation of the percolative paths for charge carriers that extend throughout the whole structure, despite the fact that the oligomers are short (6–9 rings) and crystallites are thin along the π–π stacking direction, consisting of only two or three π–π stacked oligomers. The existence of the percolative paths explains the previously observed high conductivity in in vivo polymerized ETE-S. We also explored the geometrical conformation of ETE-S oligomers and the bending of their aliphatic chains as a function of the oligomer lengths.

Graphical abstract: Morphology of a self-doped conducting oligomer for green energy applications

Back to tab navigation

Supplementary files

Publication details

The article was received on 26 Jun 2017, accepted on 03 Sep 2017 and first published on 04 Sep 2017


Article type: Paper
DOI: 10.1039/C7NR04617K
Citation: Nanoscale, 2017,9, 13717-13724
  • Open access: Creative Commons BY-NC license
  •   Request permissions

    Morphology of a self-doped conducting oligomer for green energy applications

    J. F. Franco-Gonzalez, E. Pavlopoulou, E. Stavrinidou, R. Gabrielsson, D. T. Simon, M. Berggren and I. V. Zozoulenko, Nanoscale, 2017, 9, 13717
    DOI: 10.1039/C7NR04617K

    This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. Material from this article can be used in other publications provided that the correct acknowledgement is given with the reproduced material and it is not used for commercial purposes.

    Reproduced material should be attributed as follows:

    • For reproduction of material from NJC:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    • For reproduction of material from PCCP:
      [Original citation] - Published by the PCCP Owner Societies.
    • For reproduction of material from PPS:
      [Original citation] - Published by The Royal Society of Chemistry (RSC) on behalf of the European Society for Photobiology, the European Photochemistry Association, and RSC.
    • For reproduction of material from all other RSC journals:
      [Original citation] - Published by The Royal Society of Chemistry.

    Information about reproducing material from RSC articles with different licences is available on our Permission Requests page.

Search articles by author

Spotlight

Advertisements