Issue 27, 2017

Mechanistic insights into the photocatalytic properties of metal nanocluster/graphene ensembles. Examining the role of visible light in the reduction of 4-nitrophenol

Abstract

Metal nanoclusters (MNCs) based on silver and gold, abbreviated as AgNCs and AuNCs, respectively, were synthesized and combined with functionalized graphene, abbreviated as f-G, forming novel MNC/f-G ensembles. The preparation of MNCs/f-G was achieved by employing attractive electrostatic interactions developed between negatively charged MNCs, attributed to the presence of carboxylates due to α-lipoic acid employed as a stabilizer, and positively charged f-G, attributed to the presence of ammonium units as addends. The realization of MNC/f-G ensembles was established via titration assays as evidenced by electronic absorption and photoluminescence spectroscopy as well as scanning transmission electron microscopy (STEM) and energy-dispersive X-ray (EDX) spectroscopy analyses. Photoinduced charge-transfer phenomena were inferred within MNCs/f-G, attributed to the suppression of MNC photoluminescence by the presence of f-G. Next, the MNC/f-G ensembles were successfully employed as proficient catalysts for the model reduction of 4-nitrophenol to the corresponding 4-aminophenol as proof for the photoinduced hydrogen production. Particularly, the reduction kinetics decelerated by half when bare MNCs were employed vs. the MNC/f-G ensembles, highlighting the beneficial role of MNCs/f-G in catalysing the process. Furthermore, AuNCs/f-G displayed exceptionally higher catalytic activity both in the dark and under visible light illumination conditions, which is ascribed to three synergistic mechanisms, namely, (a) hydride transfer from Au–H, (b) hydride transfer from photogenerated Au–H species, and (c) hydrogen produced by the photoreduction of water. Finally, recycling and re-employing MNCs/f-G in successive catalytic cycles without loss of activity toward the reduction of 4-nitrophenol was achieved, thereby highlighting their wider applicability.

Graphical abstract: Mechanistic insights into the photocatalytic properties of metal nanocluster/graphene ensembles. Examining the role of visible light in the reduction of 4-nitrophenol

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2017
Accepted
09 Jun 2017
First published
14 Jun 2017

Nanoscale, 2017,9, 9685-9692

Mechanistic insights into the photocatalytic properties of metal nanocluster/graphene ensembles. Examining the role of visible light in the reduction of 4-nitrophenol

M. A. Koklioti, T. Skaltsas, Y. Sato, K. Suenaga, A. Stergiou and N. Tagmatarchis, Nanoscale, 2017, 9, 9685 DOI: 10.1039/C7NR02944F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements