Issue 27, 2017

One-pot synthesis of nanochain particles for targeting brain tumors

Abstract

To synthesize multi-component nanochains, we developed a simple ‘one-pot’ synthesis, which exhibited high yield and consistency. The nanochains particles consist of parent nanospheres chemically linked into a higher-order, chain-like assembly. The one-pot synthesis is based on the addition of two types of parent nanospheres in terms of their surface chemical functionality (e.g., decorated with PEG-NH2 or PEG-COOH). By reacting the two types of parent nanospheres at a specific ratio (∼2 : 1) for a short period of time (∼30 min) under rigorous stirring, nanochains were formed. For example, we show the synthesis of iron oxide nanochains with lengths of about 125 nm consisting of 3–5 constituting nanospheres. The chain-like shaped nanoparticle possessed a unique ability to target and rapidly deposit on the endothelium of glioma sites via vascular targeting. To target and image invasive brain tumors, we used iron oxide nanochains with the targeting ligand being the fibronectin-targeting peptide CREKA. Overexpression of fibronectin is strongly associated with the perivascular regions of glioblastoma multiforme and plays a critical role in migrating and invasive glioma cells. In mice with invasive glioma tumors, 3.7% of the injected CREKA-targeted nanochains was found in gliomas within 1 h. Notably, the intratumoral deposition of the nanochain was ∼2.6-fold higher than its spherical variant. Using MR imaging, the precise targeting of nanochains to gliomas provided images with the exact topology of the disease including their margin of infiltrating edges and distant invasive sites.

Graphical abstract: One-pot synthesis of nanochain particles for targeting brain tumors

Supplementary files

Article information

Article type
Paper
Submitted
03 Apr 2017
Accepted
20 Jun 2017
First published
27 Jun 2017

Nanoscale, 2017,9, 9659-9667

One-pot synthesis of nanochain particles for targeting brain tumors

V. S. Perera, G. Covarrubias, M. Lorkowski, P. Atukorale, A. Rao, S. Raghunathan, R. Gopalakrishnan, B. O. Erokwu, Y. Liu, D. Dixit, S. M. Brady-Kalnay, D. Wilson, C. Flask, J. Rich, P. M. Peiris and E. Karathanasis, Nanoscale, 2017, 9, 9659 DOI: 10.1039/C7NR02370G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements