Issue 20, 2017

Spatially-resolved profiling of carbon nanotube uptake across cell lines

Abstract

The internalisation and intra-cellular distribution of carbon nanotubes (CNT) has been quantitatively assessed using imaging flow cytometry. Spatial analysis of the bright field images indicates the presence of a small sub-population (5% of cells) in which the internalised CNTs are packed into pronounced clusters, visible as dark spots due to strong optical scattering by the nanotubes. The area of these spots can be used as a label-free metric of CNT dose and we assess the relative uptake of charge-neutral CNTs, over a 24 hours exposure period across four cell types: J774 mouse macrophage cells, A549 and Calu-6 human lung cancer cells, and MCF-7 human breast cells. The relative dose as indicated by the spot-area metric closely correlates to results using the same CNT preparation, conjugated to a FITC-label and shows pronounced uptake by the J774 cells leading to a mean dose that is >60% higher than for the other cell types. Spatial evaluation of dosing clusters is also used to quantify differences in uptake by J774 cells of CNTs with different surface functionalisation. While the percentage of CNT-cluster positive cells increases from 5% to 19% when switching from charge-neutral CNTs to poly-cationic, dendron functionalised CNTs, the single cell level analysis of internalised clusters indicates a lower dose per cell of poly-cationic CNTs relative to the charge-neutral CNTs. We concluded that there is dose homeostasis i.e., the population-averaged cellular dose of CNTs remained unchanged.

Graphical abstract: Spatially-resolved profiling of carbon nanotube uptake across cell lines

Supplementary files

Article information

Article type
Paper
Submitted
03 Mar 2017
Accepted
28 Apr 2017
First published
03 May 2017

Nanoscale, 2017,9, 6800-6807

Spatially-resolved profiling of carbon nanotube uptake across cell lines

H. D. Summers, P. Rees, J. T-W. Wang and K. T. Al-Jamal, Nanoscale, 2017, 9, 6800 DOI: 10.1039/C7NR01561E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements