Issue 46, 2016

Assessment of aggregative growth of MnZn ferrite nanoparticles

Abstract

MnZn ferrite (MnZnFe2O4, MZF) nanoparticles (NPs) represent an intriguing class of magnetic NPs in terms of composition-tunable magnetic properties, but the ability to control the size and morphology is essential to exploit such properties. This report describes the findings of an investigation of the size and morphology controllability in terms of growth kinetics of the NPs in a thermochemical synthesis process. MZF NPs of different sizes were synthesized at different temperatures. In addition to shape evolution, the overall size of the as-synthesized magnetic NPs is shown to increase with the reaction temperature and reaction time, revealing that the size growth process can be described by an aggregative growth mechanism. While the apparent rate constant decreases with the reaction temperature, the growth factor remains at 1–2, consistent with a low-dimensionality growth mode. Higher temperature and longer reaction time apparently favor the formation of cubic shapes. The dependence of the overall average particle size on the reaction temperature yields a diffusional activation energy in the order of 10–20 kJ mol−1, a value slightly smaller than those reported for aggregative growth of other types of NPs in solutions. The unravelling of the kinetic parameters provides some new insights into the development of strategies for synthesizing MZF NPs with controllable sizes and shapes.

Graphical abstract: Assessment of aggregative growth of MnZn ferrite nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
28 Aug 2016
Accepted
14 Oct 2016
First published
15 Nov 2016

Nanoscale, 2016,8, 19359-19367

Assessment of aggregative growth of MnZn ferrite nanoparticles

H. Cheng, J. Li, S. Wong and C. Zhong, Nanoscale, 2016, 8, 19359 DOI: 10.1039/C6NR06819G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements