Issue 7, 2016

Aqueous compatible boron nitride nanosheets for high-performance hydrogels

Abstract

Hexagonal boron nitride nanosheets (BNNSs) possess ultimate thermal and chemical stabilities and mechanical strengths. However, the unmodified BNNSs are hydrophobic and insoluble in water, which hinders their use in many technological areas requiring aqueous compatibility. In this work, h-BN was treated with molten citric acid to produce aqueous dispersible boron nitride sheets (ca-BNNSs). The resultant ca-BNNSs were used to fabricate ca-BNNS/polyacrylamide (i.e., BNNS2.5/PAAm) nanocomposite hydrogels, targeting high water retentivity and flexibility. The BNNS2.5/PAAm hydrogel (initially swollen in water) largely remained swollen (water content ∼94 wt%) even after one-year storage under ambient conditions. Importantly, the swollen BNNS2.5/PAAm hydrogel (water content ∼95 wt%) was highly flexible. Its elongation and compressive strength exceeded 10 000% and 8 MPa at 97% strain, respectively. Moreover, the aforementioned hydrogel recovered upon the removal of compression force, without obvious damage. The substantially improved water retentivity and flexibility revealed that BNNSs can serve as a promising new platform in the development of high-performance hydrogels.

Graphical abstract: Aqueous compatible boron nitride nanosheets for high-performance hydrogels

Supplementary files

Article information

Article type
Paper
Submitted
30 Oct 2015
Accepted
15 Jan 2016
First published
15 Jan 2016

Nanoscale, 2016,8, 4260-4266

Aqueous compatible boron nitride nanosheets for high-performance hydrogels

X. Hu, J. Liu, Q. He, Y. Meng, L. Cao, Y. Sun, J. Chen and F. Lu, Nanoscale, 2016, 8, 4260 DOI: 10.1039/C5NR07578E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements