Issue 45, 2015

Thermal–structural relationship of individual titania nanotubes

Abstract

The thermal properties of nano-scale materials are largely influenced by their geometry. The zero, one and quasi one dimensional forms of the same material could exhibit unique thermal transport properties depending upon the shape and nano-scale feature size. In order to gain a clear understanding of the contributions from geometrical scattering effects on thermal transport, it is required to study these nano-materials in a single isolated form rather than in clusters or films. In the past decade, titanium dioxide nanotube arrays fabricated by anodic oxidation of titanium emerged as a useful semiconductor architecture for a variety of applications, particularly for solar energy conversion. Nonetheless, the thermal properties of individual nanotubes that are important for their use in high temperature applications have not been clearly understood. Here we report the thermal transport properties of individual titania nanotubes as revealed by our preliminary study using a suspended microdevice that facilitates the thermal conductivity measurements and crystal structure investigation on the same nanotube. The nanotubes were prepared by anodic oxidation of a titanium foil in HF–DMSO electrolyte at 60 V, having outer diameters in the range of 200 to 300 nm and wall thicknesses of ∼30 to 70 nm in either amorphous or polycrystalline anatase phase. The thermal conductivity of single nanotubes was found to be very close to that of the amorphous phase (1.5 W mK−1 and 0.85 W mK−1 respectively) and it was only half of the thermal conductivity of the nanotube arrays in the film form. The thermal conductivity of bulk TiO2 is known to be almost six times higher. The observed thermal conductivity suppression in single nanotubes was explained using a transport model developed by considering diffuse phonon-surface scattering and scattering of phonons by ionized impurities of concentrations in the order of 1018–1019 cm−3.

Graphical abstract: Thermal–structural relationship of individual titania nanotubes

Article information

Article type
Paper
Submitted
29 Jul 2015
Accepted
01 Oct 2015
First published
15 Oct 2015

Nanoscale, 2015,7, 19004-19011

Thermal–structural relationship of individual titania nanotubes

H. Brahmi, G. Katwal, M. Khodadadi, S. Chen, M. Paulose, O. K. Varghese and A. Mavrokefalos, Nanoscale, 2015, 7, 19004 DOI: 10.1039/C5NR05072C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements