Issue 8, 2015

Soft landing of bare nanoparticles with controlled size, composition, and morphology

Abstract

Physical synthesis employing magnetron sputtering and gas aggregation in a modified commercial source has been coupled with size-selection and ion soft landing to prepare bare nanoparticles on surfaces with controlled coverage, size, composition, and morphology. Employing atomic force microscopy (AFM) and scanning electron microscopy (SEM), it is demonstrated that the size and coverage of nanoparticles on flat and stepped surfaces may be controlled using a quadrupole mass filter and the length of deposition, respectively. AFM shows that nanoparticles bind randomly to flat surfaces when soft landed at relatively low coverage (4 × 104 ions μm−2). On stepped surfaces at intermediate coverage (4 × 105 ions μm−2) nanoparticles bind along step edges forming extended linear chains. At the highest coverage (2 × 106 ions μm−2) nanoparticles form a continuous film on flat surfaces. On one surface with sizable defects, the presence of localized imperfections results in agglomeration of nanoparticles onto these features and formation of neighboring zones devoid of particles. Employing high resolution scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS) the customized magnetron sputtering/gas aggregation source is demonstrated to produce bare single metal particles with controlled morphology as well as bimetallic alloy nanoparticles with defined core–shell structures of that are of interest to catalysis.

Graphical abstract: Soft landing of bare nanoparticles with controlled size, composition, and morphology

Supplementary files

Article information

Article type
Paper
Submitted
15 Nov 2014
Accepted
17 Jan 2015
First published
19 Jan 2015

Nanoscale, 2015,7, 3491-3503

Soft landing of bare nanoparticles with controlled size, composition, and morphology

G. E. Johnson, R. Colby and J. Laskin, Nanoscale, 2015, 7, 3491 DOI: 10.1039/C4NR06758D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements