Issue 14, 2014

Ligand effect on the size, valence state and red/near infrared photoluminescence of bidentate thiol gold nanoclusters

Abstract

Synthesis and characterization of gold nanoclusters (Au NCs) stabilized by a zwitterion ligand (Zw) at different Au : Zw ratios are demonstrated. Au NCs exhibit photoluminescence (PL) emission which is tunable from the near infrared (805 nm) to the red spectral window (640 nm) and strongly influenced by the ligand shell size. Optical and chemical investigations suggest the presence of gold polymeric species and large nanoclusters for a molar ratio of Au : Zw = 1 : 1. For 1 : 5 < Au : Zw < 1 : 1, Zw induces etching of the large clusters and the formation of a monolayer of the bidentate ligands on the Au NCs (cluster size ∼7 to 10 kDa) accompanied by red PL emission at λ = 710 nm. A second organic layer starts to form for larger Zw fractions (Au : Zw < 1 : 5) as a result of electrostatic and covalent interactions of the zwitterion leading to an enhancement and a blue-shift of the PL emission. The effect of temperature and pH on the optical properties of gold clusters is strongly dependent on the ligand shell and demonstrates the importance of defining gold nanoclusters as supramolecular assemblies with a complex environment.

Graphical abstract: Ligand effect on the size, valence state and red/near infrared photoluminescence of bidentate thiol gold nanoclusters

Supplementary files

Article information

Article type
Paper
Submitted
28 Feb 2014
Accepted
25 Apr 2014
First published
29 Apr 2014

Nanoscale, 2014,6, 8091-8099

Author version available

Ligand effect on the size, valence state and red/near infrared photoluminescence of bidentate thiol gold nanoclusters

X. L. Guevel, O. Tagit, C. E. Rodríguez, V. Trouillet, M. Pernia Leal and N. Hildebrandt, Nanoscale, 2014, 6, 8091 DOI: 10.1039/C4NR01130A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements