Jump to main content
Jump to site search
PLANNED MAINTENANCE Close the message box

Scheduled maintenance upgrade on Thursday 4th of May 2017 from 8.00am to 9.00am (BST).

During this time our websites will be offline temporarily. If you have any questions please use the feedback button on this page. We apologise for any inconvenience this might cause and thank you for your patience.


Issue 2, 2013
Previous Article Next Article

Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array

Author affiliations

Abstract

The rapid development in nanoparticle production and application during the past decade requires an easy, rapid, and predictive screening method for nanoparticles toxicity assay. In this study, the toxicological effects and the source of toxicity of copper nanoparticles (CuNPs) are investigated based on a stress-responsive bacterial biosensor array. According to the responses of the biosensing strains, it is found that CuNPs induce not only oxidative stress in E. coli, but also protein damage, DNA damage, and cell membrane damage, and ultimately cause cell growth inhibition. Through enzyme detoxification analysis, the toxicological effects of CuNPs are traced to H2O2 generation from CuNPs. Rapid copper release from CuNPs and Cu(I) production are observed. The oxidation of the released Cu(I) has a close relation to H2O2 production, as tris-(hydroxypropyltriazolylmethyl) amine, the specific Cu(I) chelator, can largely protect the cells from the toxicity of CuNPs. In addition, the TEM study shows that CuNPs can be adsorbed and incepted fast by the cells. Comparatively, copper microparticles are relatively stable in the system and practically non-toxic, which indicates the importance of toxic estimation of materials at the nanoscale. In addition, the Cu(II) ion can induce protein damage, membrane damage, and slight DNA damage only at a relatively high concentration. The current study reveals the preliminary mechanism of toxicity of CuNPs, and suggests that the stress-responsive bacterial biosensor array can be used as a simple and promising tool for rapid screening in vitro toxicity of nanoparticles and studying the primary mechanism of the toxicity.

Graphical abstract: Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array

Back to tab navigation
Please wait while Download options loads

Supplementary files

Publication details

The article was received on 05 Aug 2012, accepted on 08 Nov 2012 and first published on 12 Nov 2012


Article type: Paper
DOI: 10.1039/C2NR32156D
Citation: Nanoscale, 2013,5, 653-662
  •   Request permissions

    Analysis of copper nanoparticles toxicity based on a stress-responsive bacterial biosensor array

    F. Li, C. Lei, Q. Shen, L. Li, M. Wang, M. Guo, Y. Huang, Z. Nie and S. Yao, Nanoscale, 2013, 5, 653
    DOI: 10.1039/C2NR32156D

Search articles by author