Issue 16, 2012

Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots

Abstract

Quantum dots are known for their superior optical properties; however, when transferred into aqueous media, their luminescent properties are frequently compromised. When encapsulated in micelles for bioimaging applications, luminescent silicon quantum dots can lose as much as 50% of their luminescence depending on the formulation used. Here, we create an energy transfer micelle platform that combines silicon quantum dots with an anthracene-based dye in the hydrophobic core of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG) micelles. These phospholipid micelles are water dispersible, stable, and surrounded by a PEGylated layer with modifiable functional groups. The spectroscopic properties of energy transfer between the anthracene donors and silicon quantum dot acceptors were analyzed based on the observed dependence of the steady-state emission spectrum on concentration ratio, excitation wavelength, pH, and temperature. The luminescence of silicon quantum dots from the core of a 150 nm micelle is enhanced by more than 80% when the anthracene dye is added. This work provides a simple yet readily applicable solution to the long-standing problem of luminescence enhancement of silicon quantum dots and can serve as a template for improving the quantum dot emission yield for biological applications where luminescence signal enhancements are desirable and for solar applications where energy transfer plays a critical role in device performance.

Graphical abstract: Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots

Supplementary files

Article information

Article type
Paper
Submitted
25 Apr 2012
Accepted
18 Jun 2012
First published
21 Jun 2012

Nanoscale, 2012,4, 5163-5168

Energy transfer from a dye donor to enhance the luminescence of silicon quantum dots

F. Erogbogbo, C. Chang, J. May, P. N. Prasad and M. T. Swihart, Nanoscale, 2012, 4, 5163 DOI: 10.1039/C2NR31003A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements