Issue 9, 2012

Synthesis and growth mechanism of multilayer TiO2nanotube arrays

Abstract

High-aspect-ratio TiO2 nanotube arrays formed by anodic oxidation have drawn extensive attention due to their easy fabrication and various excellent optical, electrical and biomedical properties. In contrast to conventional single-layer TiO2 nanotubes prepared via constant-voltage anodization, we synthesize multilayer TiO2 nanotube arrays with high surface area by using alternating-voltage anodization steps. This work presents synthesis and growth mechanisms of single-layer smooth TiO2 nanotubes, bamboo-type nanotubes and double-layer nanotubes, by tuning various parameters such as voltage, time, and water content in the electrolyte. It is found that ion diffusion inside the nanotubes dominates growth of these three structures. A stable pH and ion-diffusion profile allows the steady growth of smooth TiO2 tubes in NH4F-containing ethylene glycol (EG). The addition of a low-voltage anodization step reduces the pH and ion-diffusion gradient in the nanotubes and induces formation of bamboo-type nanotubes and double-layer nanotubes when a second high-voltage anodization is conducted. Ion diffusion through a nanotube takes time; thus formation of lower-layer TO2 nanotubes costs more time if longer nanotubes are grown in the upper layer, since ions diffuse through these longer nanotubes. This ion-diffusion controlled growth mechanism is further confirmed by tailoring the water content (0–20 vol%) in the electrolyte and the voltage gaps to control the time needed for initiation of lower-layer TiO2 nanotube arrays. The fundamental understanding of the growth characteristics of double-layer TiO2 nanotubes presented in this paper offers us more flexibility in engineering morphology, tuning dimensions and phase compositions of multilayer TiO2 nanotubes. In addition, we synthesize double-layer TiO2 nanotube arrays composed of one layer of anatase phase and another layer of amorphous phase.

Graphical abstract: Synthesis and growth mechanism of multilayer TiO2 nanotube arrays

Supplementary files

Article information

Article type
Paper
Submitted
09 Feb 2012
Accepted
06 Mar 2012
First published
09 Mar 2012

Nanoscale, 2012,4, 2968-2977

Synthesis and growth mechanism of multilayer TiO2 nanotube arrays

D. Guan and Y. Wang, Nanoscale, 2012, 4, 2968 DOI: 10.1039/C2NR30315A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements