Issue 9, 2012

Reconstruction and electronic properties of silicon nanosheets as a function of thickness

Abstract

We have shown, using density functional theory calculations, that the properties of Si nanosheets change as a function of thickness. While Si(111) oriented nanosheets that are 0.56 nm thick (2-layers) display a novel reconstruction, classified as Si(111)-2 × 2 on both surface layers (T. Morishita, M. J. S. Spencer, S. P. Russo, I. K. Snook and M. Mikami, Chem. Phys. Lett., 2011, 506, 221), nanosheets that are up to a thickness of 1.42 nm show the Si(111)-2 × 1 surface reconstruction, that is seen on the bulk Si(111) surface, on both sides of the nanosheet. For these thicker nanosheets, the relative orientation of the π-chain structure on each surface of the nanosheet can either be the same or different, resulting in unique electronic properties. When the orientation is the same, there is a widening of the band gap, indicating that the interaction between the surface π-chains is not present when they are oriented in different directions. The electronic properties of the nanosheets approach those of the bulk by 1.42 nm thick. The variation in structural and electronic properties of Si nanosheets with different thicknesses, as shown in this study, highlights the novelty of these materials and their significance for applications in electronic device technologies.

Graphical abstract: Reconstruction and electronic properties of silicon nanosheets as a function of thickness

Article information

Article type
Paper
Submitted
12 Jan 2012
Accepted
22 Feb 2012
First published
29 Feb 2012

Nanoscale, 2012,4, 2906-2913

Reconstruction and electronic properties of silicon nanosheets as a function of thickness

M. J. S. Spencer, T. Morishita and I. K. Snook, Nanoscale, 2012, 4, 2906 DOI: 10.1039/C2NR30100H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements