Issue 16, 2018

Stereoselective synthesis of carbohydrate fused pyrano[3,2-c]pyranones as anticancer agents

Abstract

Pyrano[3,2-c]pyranone is an important structural motif present in many natural products exhibiting diverse biological activities. Two series of carbohydrate fused pyrano[3,2-c]pyranone derivatives (n = 20) were efficiently synthesized starting from 2-C-formyl galactal and 2-C-formyl glucal, reacting with various 4-hydroxycoumarins in a very short reaction time (10 min) under microwave assisted conditions. The anticancer activity of these synthesized pyrano[3,2-c]pyranones was determined in detail through cellular assays against MCF-7 (breast), MDA-MB-231 (breast) and HepG2 (liver) cancer cell lines. The newly synthesized pyrano[3,2-c]pyranones were screened for their cell-viability and anti-proliferative activity against MCF-7, MDA-MB-231 and HepG2 cell lines. Compounds 12, 13 and 14 exhibited high growth inhibitory potencies selectively against MCF-7 cells with half-maximal inhibitory concentration (IC50) values of 19.9, 14.5 and 10.9 μM respectively. Compounds 12, 13, 14, 15 and 19 inhibited the growth of MDA-MB-231 cells (breast) by 43, 44, 37, 31 and 45% respectively. However, no inhibitory effect was observed for these compounds in the human liver cancer cell line (HepG2) and normal cell lines (HEK293, human embryonic kidney cells). Mechanistic studies showed that these compounds alter the cell morphology and cause G2/M arrest in MCF-7. Further studies showed that compounds 12, 13 and 14 significantly inhibited cell migration which was accompanied by altered microtubule distribution. An enhanced accumulation of these compounds in cells was observed as compared to the 4-hydroxycoumarins precursor in the intracellular uptake assay. These findings confirm that carbohydrate fused pyrano[3,2-c]pyranones are better candidates for anticancer activity.

Graphical abstract: Stereoselective synthesis of carbohydrate fused pyrano[3,2-c]pyranones as anticancer agents

Supplementary files

Article information

Article type
Paper
Submitted
21 Mar 2018
Accepted
08 Jul 2018
First published
09 Jul 2018

New J. Chem., 2018,42, 13985-13997

Stereoselective synthesis of carbohydrate fused pyrano[3,2-c]pyranones as anticancer agents

P. Kumari, S. Gupta, C. Narayana, S. Ahmad, N. Vishnoi, S. Singh and R. Sagar, New J. Chem., 2018, 42, 13985 DOI: 10.1039/C8NJ01395K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements