Issue 2, 2018

High photodegradation and antibacterial activity of BN–Ag/TiO2 composite nanofibers under visible light

Abstract

To develop material with good photocatalytic properties for organic compound degradation and bacterial removal, we produced Ag/TiO2 and BN–Ag/TiO2 composite nanofibers that included controlled amounts of boron nitride (BN) nanosheets and silver (Ag). After annealing at 500 °C under air, we used scanning electron microscopy, transmission electron microscopy, Brunauer–Emmet–Teller analysis, X-ray diffraction, energy-dispersive X-ray spectroscopy, Raman spectroscopy, UV-visible reflectance spectroscopy and room temperature photoluminescence to investigate the morphological, structural and optical properties of all samples. The photocatalytic tests using methylene blue under visible light, in repeated and long-term applications, showed that the photodegradation activity of BN(5 wt%)–Ag(3 wt%)/TiO2 composite nanofibers was 17.2 and 2.3 times higher than that of pure TiO2 and Ag(3 wt%)/TiO2 nanofibers, respectively. In antibacterial tests using Gram-negative Escherichia coli, 3 hours of incubation with BN(5 wt%)–Ag(3 wt%)/TiO2 composite nanofibers killed all bacteria. These results indicate that the synthesized BN(5 wt%)–Ag(3 wt%)/TiO2 composite nanofibers can be considered to be a multifunctional material for photodegradation and antibacterial applications.

Graphical abstract: High photodegradation and antibacterial activity of BN–Ag/TiO2 composite nanofibers under visible light

Supplementary files

Article information

Article type
Paper
Submitted
24 Aug 2017
Accepted
18 Dec 2017
First published
18 Dec 2017

New J. Chem., 2018,42, 1250-1259

High photodegradation and antibacterial activity of BN–Ag/TiO2 composite nanofibers under visible light

M. Nasr, L. Soussan, R. Viter, C. Eid, R. Habchi, P. Miele and M. Bechelany, New J. Chem., 2018, 42, 1250 DOI: 10.1039/C7NJ03183A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements