Issue 19, 2017

Palladacycles having normal and spiro chelate rings designed from bi- and tridentate ligands with an indole core: structure, synthesis and applications as catalysts

Abstract

1-Pyridin-2-ylmethyl-1H-indole-3-carbaldehyde and 1-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-1H-indole-3-carbaldehyde were synthesized. Their condensation with benzyl amine resulted in indole core containing Schiff bases benzyl-(1-pyridin-2-ylmethyl-1H-indol-3-ylmethylene)amine (L1) and benzyl-[1-(1-benzyl-1H-[1,2,3]triazole-4-ylmethyl)-1H-indol-3-yl methylene]amine (L2) respectively, unknown hitherto. The K2CO3-promoted sulfenylation of the indole formed 3-(pyridin-2-ylsulfanyl)-1H-indole (L3), also unknown so far. The yield of L1–L3 was 72–93%. L1 and L2 on reaction with sodium tetrachloropalladate(II) in the presence of CH3COONa give complexes [Pd(L1/L2-H)Cl] (1/2) in which they bind in a tridentate (N, C, N′) pincer mode. L3 on reaction with [(MeCN)2PdCl2] results in a dimeric palladacycle [Pd(L3-H)Cl]2 (3) with a spiro ring. The precursor aldehydes, L1–L3 and the Pd(II)-complexes derived from them, were characterized using 1H and 13C{1H} NMR and HR-MS. Complexes 2 and 3, ligands L1 and L3 and the precursor aldehydes of L1 and L2 were authenticated with single crystal X-ray diffraction. The Pd–C bond distances (Å) are 1.932(8)/2.115(3) (2/3). The Pd–N bond lengths (Å) are: 2.063(7) and 2.028(7) for 2 and 2.053(3) and 2.019(3) for 3. These complexes have been found to be efficient as catalysts for the Suzuki–Miyaura coupling of ArCl (3 as a catalyst) and ArBr and allylation of a variety of aldehydes (1 and 2 as catalysts). The optimum loading of the complexes as catalysts is 0.001–0.01 and 1 mol% respectively for the two reactions, which appear to follow a homogeneous pathway.

Graphical abstract: Palladacycles having normal and spiro chelate rings designed from bi- and tridentate ligands with an indole core: structure, synthesis and applications as catalysts

Supplementary files

Article information

Article type
Paper
Submitted
13 Jun 2017
Accepted
01 Sep 2017
First published
01 Sep 2017

New J. Chem., 2017,41, 11342-11352

Palladacycles having normal and spiro chelate rings designed from bi- and tridentate ligands with an indole core: structure, synthesis and applications as catalysts

M. P. Singh, F. Saleem, R. S. Pal and A. K. Singh, New J. Chem., 2017, 41, 11342 DOI: 10.1039/C7NJ02116J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements