Issue 11, 2016

A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries

Abstract

Metal organic frameworks (MOFs) with considerable structural versatility are considered to be potential materials for energy storage. In this work, a Mn-1,4-benzenedicarboxylate (Mn-1,4-BDC) MOF was synthesized by reaction of 1,4-benzenedicarboxylic acid (1,4-BDC) with manganese(II) chloride (MnCl2) using a solvothermal method. When applied as an anode for lithium-ion batteries, the activated Mn-1,4-BDC@200 electrode delivered a high reversible lithium storage capacity of 974 mA h g−1 after 100 cycles at a current density of 100 mA g−1, exhibiting one of the best lithium storage properties among the reported metal organic frameworks (MOFs), also known as coordination polymer (CP) anodes. The excellent electrochemical performance of the Mn-1,4-BDC electrode is also comparable with those reported for Mn2O3 and Mn3O4 nanostructures calcined from Mn-based MOF templates.

Graphical abstract: A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
13 Jul 2016
Accepted
27 Sep 2016
First published
28 Sep 2016

New J. Chem., 2016,40, 9746-9752

A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries

H. Hu, X. Lou, C. Li, X. Hu, T. Li, Q. Chen, M. Shen and B. Hu, New J. Chem., 2016, 40, 9746 DOI: 10.1039/C6NJ02179D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements