Issue 8, 2013

Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica

Abstract

Precious metals, Au, Pt, and Pd, were successfully deposited on highly ordered mesoporous SBA-15. Two different reduction routes were employed to deposit precious metals: (1) under H2 and (2) using sodium citrate. Samples prepared using sodium citrate exhibit a uniform particle size of 10 nm while samples synthesized under H2 show high dispersion with a particle size of 8 and 20 nm for Pt and Pd, respectively. The surface area and pore volume of the mesoporous SBA-15 were significantly reduced due to the impregnation of the precious metals. Detailed TEM and XPS analyses reveal a uniform distribution of particles with a metallic valence state and no evidence of metallic oxides. The prepared catalysts were used to reduce p-nitrophenol (PNP) into p-aminophenol (PAP) where two trends were observed. The catalytic reduction efficiency for PNP reduction using the catalyst prepared with sodium citrate as a reducing agent is in the order of Au > Pt > Pd with a rate constant of 3.24 × 10−1 s−1 for Au/SBA-15. On the other hand, the catalyst prepared with H2 as a reducing agent showed a reverse trend Pd > Pt > Au with a rate constant of 7.15 × 10−1 s−1 for Pd/SBA-15. The highest catalyst efficiency was observed for the case of Pd/SBA-15 synthesized via the H2 route with a rate constant of 7.15 × 10−1 s−1. Also the reaction rate of Pd/SBA-15 synthesized via the H2 route was 2.2 times higher than that of Au/SBA-15 prepared using the sodium citrate route.

Graphical abstract: Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica

Article information

Article type
Paper
Submitted
04 Feb 2013
Accepted
03 May 2013
First published
07 May 2013

New J. Chem., 2013,37, 2399-2407

Catalytic reduction of p-nitrophenol over precious metals/highly ordered mesoporous silica

S. M. El-Sheikh, A. A. Ismail and J. F. Al-Sharab, New J. Chem., 2013, 37, 2399 DOI: 10.1039/C3NJ00138E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements