Issue 2, 2001

A highly efficient sensor molecule emitting in the near infrared (NIR): 3,5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene

Abstract

The spectroscopic properties and the photophysical behaviour of difluoroboradiaza-s-indacene 1, especially designed for the near infrared (NIR) spectral region and equipped with a p-dimethylaminophenyl group at the meso-position, were studied by steady-state and time-resolved optical spectroscopy. Solvent-dependent measurements revealed that for 1, excited state deactivation is governed by population of a non-emissive charge transfer excited state (1CT) as the solvent polarity increases, whereas reference compound 2 shows strong fluorescence from a locally excited state (1LE) in all the solvents employed. Accordingly, protonation of 1 completely suppresses the quenching excited state charge transfer process and leads to strong enhancement of fluorescence in the NIR, distinguishing 1 as a very sensitive fluorescent sensor molecule for pH or solvent acidity in this favourable wavelength region.

Article information

Article type
Paper
Submitted
12 Sep 2000
Accepted
05 Oct 2000
First published
08 Dec 2000

New J. Chem., 2001,25, 289-292

A highly efficient sensor molecule emitting in the near infrared (NIR): 3,5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene

K. Rurack, M. Kollmannsberger and J. Daub, New J. Chem., 2001, 25, 289 DOI: 10.1039/B007379M

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements