Issue 3, 2011

From biological pathways to regulatory networks

Abstract

This paper presents a general theoretical framework for generating Boolean networks whose state transitions realize a set of given biological pathways or minor variations thereof. This ill-posed inverse problem, which is of crucial importance across practically all areas of biology, is solved by using Karnaugh maps which are classical tools for digital system design. It is shown that the incorporation of prior knowledge, presented in the form of biological pathways, can bring about a dramatic reduction in the cardinality of the network search space. Constraining the connectivity of the network, the number and relative importance of the attractors, and concordance with observed time-course data are additional factors that can be used to further reduce the cardinality of the search space. The networks produced by the approaches developed here should facilitate the understanding of multivariate biological phenomena and the subsequent design of intervention approaches that are more likely to be successful in practice. As an example, the results of this paper are applied to the widely studied p53 pathway and it is shown that the resulting network exhibits dynamic behavior consistent with experimental observations from the published literature.

Graphical abstract: From biological pathways to regulatory networks

Article information

Article type
Paper
Submitted
05 Nov 2010
Accepted
29 Nov 2010
First published
15 Dec 2010

Mol. BioSyst., 2011,7, 843-851

From biological pathways to regulatory networks

R. K. Layek, A. Datta and E. R. Dougherty, Mol. BioSyst., 2011, 7, 843 DOI: 10.1039/C0MB00263A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements