Issue 14, 2017

Controlled self-assembly of alginate microgels by rapidly binding molecule pairs

Abstract

Controlled self-assembly of cell-encapsulating microscale polymeric hydrogels (microgels) could be advantageous in a variety of tissue engineering and regenerative medicine applications. Here, a method of assembly by chemical modification of alginate polymer with binding pair molecules (BPM) was explored. Alginate was modified with several types of BPM, specifically biotin and streptavidin and click chemistry compounds, and fabricated into 25–30 μm microgels using a microfluidic platform. These microgels were demonstrated to self-assemble under physiological conditions. By combining complementary microgels at a high ratio, size-defined assemblages were created, and the effects of BPM type and assembly method on the number of microgels per assemblage and packing density were determined. Furthermore, a magnetic process was developed to separate assemblages from single microgels, and allow formation of multilayer spheroids. Finally, cells were singly encapsulated into alginate microgels and assembled using BPM-modified alginate, suggesting potential applications in regenerative medicine.

Graphical abstract: Controlled self-assembly of alginate microgels by rapidly binding molecule pairs

Supplementary files

Article information

Article type
Paper
Submitted
09 May 2017
Accepted
08 Jun 2017
First published
12 Jun 2017

Lab Chip, 2017,17, 2481-2490

Controlled self-assembly of alginate microgels by rapidly binding molecule pairs

Y. Hu, A. S. Mao, R. M. Desai, H. Wang, D. A. Weitz and D. J. Mooney, Lab Chip, 2017, 17, 2481 DOI: 10.1039/C7LC00500H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements