Issue 12, 2017

3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison

Abstract

The characterisation of the fluid motion induced by the acoustic streaming effect is of paramount interest for novel microfluidic devices based on surface acoustic waves (SAWs), e.g. for a detailed description of the achievable mixing efficiency and thus the design of such devices. Here, we present for the first time a quantitative 3D comparison between experimental measurements and numerical simulations of the acoustic streaming induced fluid flow inside a microchannel originating from a SAW. On the one hand, we performed fully three-dimensional velocity measurements using the astigmatism particle tracking velocimetry. On the other hand, we derived a novel streaming force approach solving the damped wave equation, which allows fast and easy 3D simulations of the acoustic streaming induced fluid flow. Furthermore, measurements of the SAW amplitude profile inside the fluid filled microchannel were performed. Based on these results, we obtained a very good agreement between the velocity measurements and the simulations of the fluid flow demonstrating the importance of comprising the actual shape of the SAW amplitude profile for quantitatively reliable simulations. It is shown that the novel streaming force approach is a valid approximation for the simulation of the acoustic streaming induced fluid flow, allowing a rapid and simple estimation of the flow field of SAW based microfluidic devices.

Graphical abstract: 3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison

Article information

Article type
Paper
Submitted
22 Feb 2017
Accepted
18 May 2017
First published
18 May 2017

Lab Chip, 2017,17, 2104-2114

3D measurement and simulation of surface acoustic wave driven fluid motion: a comparison

F. Kiebert, S. Wege, J. Massing, J. König, C. Cierpka, R. Weser and H. Schmidt, Lab Chip, 2017, 17, 2104 DOI: 10.1039/C7LC00184C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements