Issue 10, 2014

Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions

Abstract

We present microfluidic chip based devices that produce liquid jets with micrometer diameters while operating at very low flow rates. The chip production is based on established soft-lithographical techniques employing a three-layer design protocol. This allows the exact, controlled and reproducible design of critical parts such as nozzles and the production of nozzle arrays. The microfluidic chips reproducibly generate liquid jets exiting at perfect right angles with diameters between 20 μm and 2 μm, and under special circumstances, even down to 0.9 μm. Jet diameter, jet length, and the domain of the jetting/dripping instability can be predicted and controlled based on the theory for liquid jets in the plate-orifice configuration described by Gañán-Calvo et al. Additionally, conditions under which the device produces highly reproducible monodisperse droplets at exact and predictable rates can be achieved. The devices operate under atmospheric and under vacuum conditions making them highly relevant for a wide range of applications, for example, for free-electron lasers. Further, the straightforward integration of additional features such as a jet-in-jet is demonstrated. This device design has the potential to integrate more features based on established microfluidic components and may become a standard device for small liquid jet production.

Graphical abstract: Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions

Supplementary files

Article information

Article type
Paper
Submitted
09 Dec 2013
Accepted
14 Feb 2014
First published
17 Feb 2014

Lab Chip, 2014,14, 1733-1745

Author version available

Microfluidic liquid jet system with compatibility for atmospheric and high-vacuum conditions

M. Trebbin, K. Krüger, D. DePonte, S. V. Roth, H. N. Chapman and S. Förster, Lab Chip, 2014, 14, 1733 DOI: 10.1039/C3LC51363G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements