Issue 11, 2012

Capillary soft valves for microfluidics

Abstract

Capillary-driven microfluidics are simple to use and provide the opportunity to perform fast biological assays with nanogram quantities of reagents and microliters of sample. Here we describe capillary soft valves (CSVs) as a simple-to-implement and -actuate approach for stopping liquids in capillary-driven microfluidics. CSVs are inserted between wettable microstructures and work to block liquids owing to a capillary pressure barrier of a few kPa. This barrier is suppressed by pressing down the soft cover of the CSV using, for example, the tip of a pen. CSVs comprise a hard layer (in silicon or polymer) with wettable microstructures and a soft cover made of poly(dimethylsiloxane) (PDMS) here. CSVs have a footprint as small as 0.6 mm2. We illustrate how these valves work in the context of detecting DNA analytes. Specifically, a dsDNA target (997 bp PCR product, non-purified) was detected at concentrations of 20 and 200 nM in a sample volume of 0.7 μL and within 10 min. The assay includes melting of the dsDNA at 95 °C, annealing of a 30-base biotinylated probe at 50 °C, and intercalation of a fluorescent dye into the re-hybridized dsDNA at 25 °C. Actuation of the CSV allows the DNA target–probe–dye complexes to flow over 100 μm wide, streptavidin receptor lines. This work suggests that CSVs can fulfil the requirements set by complex assays, in which elevated temperatures and reaction with probes, dyes and capture species are needed. CSVs therefore greatly complement capillary-driven microfluidics without adding significant design, fabrication and actuation issues.

Graphical abstract: Capillary soft valves for microfluidics

Supplementary files

Article information

Article type
Paper
Submitted
04 Jan 2012
Accepted
22 Mar 2012
First published
23 Apr 2012

Lab Chip, 2012,12, 1972-1978

Capillary soft valves for microfluidics

M. Hitzbleck, L. Avrain, V. Smekens, R. D. Lovchik, P. Mertens and E. Delamarche, Lab Chip, 2012, 12, 1972 DOI: 10.1039/C2LC00015F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements