Issue 13, 2011

Chip-based size-selective sorting of biological cells using high frequency acoustic excitation

Abstract

This work presents the size-selective sorting of single biological cells using the assembly process known as templated assembly by selective removal (TASR). We have demonstrated experimentally, for the first time, the selective placement and sorting of single SF9 cells (clonal isolate derived from Spodoptera frugiperda (Fall Armyworm) IPLB-Sf21-AE cells) into patterned hemispherical sites on rigid assembly templates using TASR. Nearly 100% of the assembly sites on the template were filled with matching cells (with assembly density as high as 900 sites per mm2) within short time spans of 3 minutes. 3-D reconstruction of cell profiles and volume analysis of cells trapped inside assembly sites demonstrates that only those cells that match the assembly site precisely (within 0.5 μm) in size are assembled on the template. The assembly conditions are also compatible with the extension of TASR to mammalian cells. TASR-based size-selective structuring and sorting of biological systems represents a valuable tool with potential for implementation in biological applications such as cell sorting for medical research or diagnostics, templating for artificial tissue replication, or isolation of single cells for the study of biological or mechanical behavior.

Graphical abstract: Chip-based size-selective sorting of biological cells using high frequency acoustic excitation

Supplementary files

Article information

Article type
Paper
Submitted
18 Jan 2011
Accepted
28 Apr 2011
First published
26 May 2011

Lab Chip, 2011,11, 2204-2211

Chip-based size-selective sorting of biological cells using high frequency acoustic excitation

G. Agarwal and C. Livermore, Lab Chip, 2011, 11, 2204 DOI: 10.1039/C1LC20050J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements