Issue 21, 2010

Integration of single oocyte trapping, in vitrofertilization and embryo culture in a microwell-structured microfluidic device

Abstract

In vitro fertilization (IVF) therapy is an important treatment for human infertility. However, the methods for clinical IVF have only changed slightly over decades: culture medium is held in oil-covered drops in Petri dishes and manipulation occurs by manual pipetting. Here we report a novel microwell-structured microfluidic device that integrates single oocyte trapping, fertilization and subsequent embryo culture. A microwell array was used to capture and hold individual oocytes during the flow-through process of oocyte and sperm loading, medium substitution and debris cleaning. Different microwell depths were compared by computational modeling and flow washing experiments for their effectiveness in oocyte trapping and debris removal. Fertilization was achieved in the microfluidic devices with similar fertilization rates to standard oil-covered drops in Petri dishes. Embryos could be cultured to blastocyst stages in our devices with developmental status individually monitored and tracked. The results suggest that the microfluidic device may bring several advantages to IVF practices by simplifying oocyte handling and manipulation, allowing rapid and convenient medium changing, and enabling automated tracking of any single embryo development.

Graphical abstract: Integration of single oocyte trapping, in vitrofertilization and embryo culture in a microwell-structured microfluidic device

Supplementary files

Article information

Article type
Paper
Submitted
05 May 2010
Accepted
23 Jul 2010
First published
15 Sep 2010

Lab Chip, 2010,10, 2848-2854

Integration of single oocyte trapping, in vitrofertilization and embryo culture in a microwell-structured microfluidic device

C. Han, Q. Zhang, R. Ma, L. Xie, T. Qiu, L. Wang, K. Mitchelson, J. Wang, G. Huang, J. Qiao and J. Cheng, Lab Chip, 2010, 10, 2848 DOI: 10.1039/C005296E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements