Issue 10, 2009

Microreactors for radiopharmaceutical synthesis

Abstract

Multiple advantages of microfluidics have been demonstrated in the area of organic synthesis. However, only a limited number of them have found applications in radiopharmaceutical synthesis, while that is an area where the need for improvements offered by microfluidics is very significant. The need is to create an environment where all reactions involving short-lived radioisotopes such as 18F (110 min half-life) or 11C (20 min half-life) are rapid and high-yielding while the devices are controlled remotely. Several groups have identified the potential of microfluidics in this area and have demonstrated that various steps of conventional radiosynthesis can be replaced by microfluidic devices. However, despite promising results that stir up the interest in the scientific community, none of these inventions has found commercial applications with broad use yet. This article will review the technologies reported to date and analyze the unmet needs that will have to be addressed before microfluidic technology has a chance of becoming a viable and truly advantageous method of preparation of commercial radiopharmaceuticals. The latter mostly center around Positron Emission Tomography (PET) biomarkers.

Graphical abstract: Microreactors for radiopharmaceutical synthesis

Article information

Article type
Frontier
Submitted
12 Nov 2008
Accepted
12 Mar 2009
First published
26 Mar 2009

Lab Chip, 2009,9, 1326-1333

Microreactors for radiopharmaceutical synthesis

A. M. Elizarov, Lab Chip, 2009, 9, 1326 DOI: 10.1039/B820299K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements