Issue 4, 2008

Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags

Abstract

High-throughput screening assays of native and recombinant proteins are increasingly crucial in life science research, including fields such as drug screening and enzyme engineering. These assays are typically highly parallel, and require minute amounts of purified protein per assay. To address this need, we have developed a rapid, automated microscale process for isolating specific proteins from sub-microlitre volumes of E. Colicell lysate. Recombinant proteins are genetically tagged to drive partitioning into the PEG-rich phase of a flowing aqueous two-phase system, which removes ∼85% of contaminating proteins, as well as unwanted nucleic acids and cell debris, on a simple microfluidic device. Inclusion of the genetic tag roughly triples recovery of the autofluorescent protein AcGFP1, and also significantly improves recovery of the enzyme glutathione S-transferase (GST), from nearly zero recovery for the wild-type enzyme, up to 40% with genetic tagging. The extraction process operates continuously, with only a single step from cell lysate to purified protein, and does not require expensive affinity reagents or troublesome chromatographic steps. The two-phase system is mild and does not disrupt protein function, as evidenced by recovery of active enzymes and functional fluorescent protein from our microfluidic process. The microfluidic aqueous two-phase extraction forms the core component of an integrated lab-on-a-chip device comprising cell culture, lysis, purification and analysis on a single device.

Graphical abstract: Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2007
Accepted
24 Jan 2008
First published
25 Feb 2008

Lab Chip, 2008,8, 527-532

Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags

R. J. Meagher, Y. K. Light and A. K. Singh, Lab Chip, 2008, 8, 527 DOI: 10.1039/B716462A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements