Issue 8, 2007

Bio-chip for spatially controlled transfection of nucleic acid payloads into cells in a culture

Abstract

Transfection of siRNA and plasmid nucleic molecules to animal, microbial and plant cell cultures is a critical process in various research areas, including drug discovery, functional genomics and basic life science research. Till recent times, transfection of these exogenous molecules have been global in nature i.e. targeting all the cells in a culture and lacking capability to spatially confine the transfection to small populations of cells within a single culture. However, in emerging areas like high-throughput screening of large molecule libraries, there is a critical need to transfect multiple different molecules to locally specified regions of a single cell culture and monitor phenotypical changes in these different cell populations. In this study, we present a cell-based biochip that utilizes a microelectrode array to generate localized current density fields that induce electroporation to a targeted group of cells for site-specific transfection of exogenous molecules. More specifically, we optimize the transfection efficiency and viabilities for spatially controlled transfection of Alexa-Fluor-488 conjugated siRNA molecules into NIH3T3 fibroblast cell cultures. Optimal electroporation parameters are established at current density values ranging between 0.05–0.07 µA µm−2 for high transfection efficiencies (>60%) while maintaining viability (>80%) on individual microelectrodes. Additionally, exogenous plasmid molecules are electroporated for site-specific GFP expression and monitored over 48 h in-situ. The microelectrode array technology reported here can therefore be potentially used for targeting specific cells in a culture with spatial precision and transfecting siRNA and plasmids. The microfabrication approach lends itself to significant high-throughput applications in drug-discovery research.

Graphical abstract: Bio-chip for spatially controlled transfection of nucleic acid payloads into cells in a culture

Article information

Article type
Paper
Submitted
18 May 2007
Accepted
23 May 2007
First published
08 Jun 2007

Lab Chip, 2007,7, 1004-1011

Bio-chip for spatially controlled transfection of nucleic acid payloads into cells in a culture

T. Jain and J. Muthuswamy, Lab Chip, 2007, 7, 1004 DOI: 10.1039/B707479D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements