Issue 1, 2001

A novel type of microscopic size chip based on double-stranded nucleic acids

Abstract

The double-stranded molecules of nucleic acids (NA) of B- and A-families fixed in the structure of cholesteric liquid-crystalline dispersions, formed as a result of phase exclusion of these molecules from polymer-containing solution, have been used as ‘building blocks’ for the molecular design. Using the formation of polymeric chelate bridges between NA molecules, three-dimensional structures consisting of alternating NA, anthracycline and copper ions, were created. The formation of the polymeric chelate bridges allows one to stabilize the initial spatial mode of ordering of neighboring NA molecules in a form of so-called ‘molecular constructions’, immobilize these constructions onto supporting film and evaluate their sizes and shape. The creation of NA molecular constructions is accompanied by an ‘extra-increase’ in the amplitude of the bands in the CD spectra, despite the initial sense of cholesteric twisting characteristic of liquid-crystalline dispersions. Destroying of polymeric chelate bridges between NA molecules by action of biologically relevant compounds results in disintegration of NA liquid-crystalline molecular constructions. Three-dimensional NA molecular construction can be used as a microscopic size multifunctional chemical unit (chip) for biological or chemical needs.

Article information

Article type
Paper
Submitted
20 Apr 2001
Accepted
02 Jul 2001
First published
09 Aug 2001

Lab Chip, 2001,1, 35-41

A novel type of microscopic size chip based on double-stranded nucleic acids

Yu. M. Yevdokimov, V. I. Salyanov and M. A. Zakharov, Lab Chip, 2001, 1, 35 DOI: 10.1039/B103557F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements