Issue 33, 2012

Fluorescence ratiometric zinc sensors based on controlled energy transfer

Abstract

The high-fidelity detection of labile zinc is of central importance for understanding the molecular mechanisms that link zinc homeostasis and human pathophysiology. Fluorescence ratiometric sensors are most suitable for the detection and trafficking of intracellular zinc ions. Here, we report the development of fluorescence ratiometric zinc sensors (HN1 and HN2) based on two-fluorophore platforms. The sensor constructs include blue fluorescent umbelliferone and an energy-accepting chromophore that absorbs the blue fluorescence. Zinc binding was found to promote fluorescence turn-on of the umbelliferone emission by suppression of intramolecular photoinduced electron transfer, thereby facilitating resonance energy transfer to the energy acceptors. The net observables were the fluorescence ratiometric changes, the extent of which depended strongly on the chemical structures of the acceptors. Photophysical investigations, including steady-state and transient photoluminescence spectroscopy, suggested a mechanism for the fluorescent zinc response that involved a combination of the intramolecular electron transfer and the interchromophoric energy transfer. The zinc probes displayed sensing capability that is suitable for the detection of biological zinc ions, with good selectivity, pH tolerance, and appropriate Kd values. Finally, zinc detection was demonstrated by fluorescence ratiometric visualization of exogenously supplied zinc ions in live HeLa cells. The probes enabled the reliable monitoring of zinc equilibration across the cell membrane.

Graphical abstract: Fluorescence ratiometric zinc sensors based on controlled energy transfer

Supplementary files

Article information

Article type
Paper
Submitted
25 May 2012
Accepted
02 Jul 2012
First published
03 Jul 2012

J. Mater. Chem., 2012,22, 17100-17112

Fluorescence ratiometric zinc sensors based on controlled energy transfer

H. Woo, Y. You, T. Kim, G. Jhon and W. Nam, J. Mater. Chem., 2012, 22, 17100 DOI: 10.1039/C2JM33366J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements