Issue 32, 2012

Molecular length adjustment for organic azo-based nonvolatile ternary memory devices

Abstract

Two conjugated small molecules with different molecular length, DPAPIT and DPAPPD, in which an electron donor dimethylamino moiety and an electron acceptor phthalimide core unit are bridged by another electron-accepting azobenzene block, were designed and synthesized. DPAPIT molecule with longer conjugation length stacked regularly in the solid state and formed uniform nanocrystalline film. The fabricated memory devices with DPAPIT as active material exhibited outstanding nonvolatile ternary memory effect with the current ratio of ∼1 : 101.7 : 104 for “0”, “1” and “2” states and all the switching threshold voltages lower than −3 V. In contrast, the shorter molecule DPAPPD showed amorphous microstructure and no obvious conductive switching behavior was observed in the device. The crystallinity and surface roughness of DPAPIT thin films were significantly improved as the annealing temperature increased, lowering the switching threshold voltages which are highly desirable for low-power consumption data-storage devices. It is worth noting that the tristable memory signals of DPAPIT film could also be achieved by using conductive atomic force microscopy with platinum-coated probe, which enables fabrication of nano-scale or even molecular-scale device, a significant progress for the ultra-high density data storage application. Mechanism analysis demonstrated that two charge traps with different depth in the molecular backbone were injected by charge carriers progressively as the external bias increased, resulting in the formation of three distinct conductive states (OFF, ON1 and ON2 states).

Graphical abstract: Molecular length adjustment for organic azo-based nonvolatile ternary memory devices

Supplementary files

Article information

Article type
Paper
Submitted
11 May 2012
Accepted
08 Jun 2012
First published
11 Jun 2012

J. Mater. Chem., 2012,22, 16582-16589

Molecular length adjustment for organic azo-based nonvolatile ternary memory devices

S. Miao, H. Li, Q. Xu, N. Li, J. Zheng, R. Sun, J. Lu and C. M. Li, J. Mater. Chem., 2012, 22, 16582 DOI: 10.1039/C2JM32992A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements