Issue 43, 2011

Novel bis-C60 derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells

Abstract

We report the application of novel mono- and bis-o-quino-dimethane C60 (oQDMC60) adducts in bulk heterojunction photovoltaic devices. When blended with poly(3-hexylthiophene), the fullerene adducts presented here have an enhanced open-circuit voltage of 640 mV and 820 mV, while preserving high short-circuit current and fill factor, resulting in efficiencies of 4.1% and 5.2%, respectively. Detailed assessment of material properties relevant to photovoltaic devices such as energy levels, charge carrier mobility, absorption and solubility further complements the evaluation. Increased fullerene solubility hindering phase segregation in blends with bis-oQDMC60 has been circumvented by an in-depth morphology optimization assisted by absorption spectroscopy, X-ray reflectivity and atomic force microscopy. This optimized preparation could also serve as a guide for implementation of similar fullerene derivatives. Furthermore, we compare bis-oQDMC60 to previously reported fullerene bis-adducts to provide insight into this emerging class of materials.

Graphical abstract: Novel bis-C60 derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells

Supplementary files

Article information

Article type
Paper
Submitted
24 May 2011
Accepted
09 Aug 2011
First published
03 Oct 2011

J. Mater. Chem., 2011,21, 17345-17352

Novel bis-C60 derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells

E. Voroshazi, K. Vasseur, T. Aernouts, P. Heremans, A. Baumann, C. Deibel, X. Xue, A. J. Herring, A. J. Athans, T. A. Lada, H. Richter and B. P. Rand, J. Mater. Chem., 2011, 21, 17345 DOI: 10.1039/C1JM12307F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements