Issue 25, 2011

Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes

Abstract

Transition metal carbonate (Ni0.3Mn0.7CO3) was co-precipitated as the precursor for Li- and Mn-enriched composite materials used as advanced cathodes for lithium-ion batteries. The optimal pH range for synthesis of Ni0.3Mn0.7CO3 in a continuous stirred tank reactor (CSTR) at the pilot scale was predicted by taking into account the chemical equilibriums between the products and reactants. The nucleation and growth of precursor particles were investigated during the CSTR process by monitoring particle size distributions, particle morphologies, chemical compositions, and structures with time. It was found that in the early stage of co-precipitation both the particle size distribution and the chemical composition were not homogeneous; a lead time of about 5 hours under our experiment conditions was necessary to achieve the uniformity in particle shape and chemical composition. The latter was not altered during extended times of co-precipitation; however, a continuous growth of particles resulted in relatively large particles (D50 > 30 μm). The electrochemical performance of the final lithiated cathode materials is reported.

Graphical abstract: Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes

Article information

Article type
Paper
Submitted
11 Mar 2011
Accepted
15 Apr 2011
First published
25 May 2011

J. Mater. Chem., 2011,21, 9290-9295

Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes

D. Wang, I. Belharouak, G. M. Koenig, G. Zhou and K. Amine, J. Mater. Chem., 2011, 21, 9290 DOI: 10.1039/C1JM11077B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements