Issue 29, 2011

Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent

Abstract

Highly nitrogen-enriched mesoporous carbon nitride materials with 2-dimensional (2-D) (2D-meso-CN) and 3-dimensional (3-D) mesostructures (3D-meso-CN) were synthesized using mesoporous silica as a hard template and cyanamide as a precursor via the incipient wetness process without using any solvent. The materials were characterized by small-angle X-ray scattering (SAXS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) for the mesostructure analysis, N2 adsorption–desorption isotherms for surface area and pore size distribution, and X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FT-IR) spectroscopy for the composition analysis of frameworks. The mesoporous carbon nitride replicas have graphitic-like stacking of carbon nitride sheets in mesopore walls. The N/C ratio of the mesoporous carbon nitride replicas is 1.13 after the carbonization at 550 °C for 3 h. 2D-meso-CN and 3D-meso-CN have the BET surface area of 361 and 343 m2 g−1, large pore volume of 0.50 and 0.67 cm3 g−1, and pore diameter of 27.8 Å (for 2D-meso-CN), 24.5 and 80.3 Å (for 3D-meso-CN), respectively. It was found that the 3D-meso-CN has higher capacity of hydrogen uptake of 0.25 wt% than the pure mesoporous carbon FDU-15 (0.16 wt%) at 50 bar under room temperature (298 K).

Graphical abstract: Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent

Article information

Article type
Paper
Submitted
25 Feb 2011
Accepted
12 May 2011
First published
20 Jun 2011

J. Mater. Chem., 2011,21, 10801-10807

Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent

S. S. Park, S. Chu, C. Xue, D. Zhao and C. Ha, J. Mater. Chem., 2011, 21, 10801 DOI: 10.1039/C1JM10849B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements