Issue 8, 2011

High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell

Abstract

A proton exchange membrane fuel cell (PEMFC) uses a solid polymer electrolyte, viz. Nafion®, sandwiched between the two electrodes. Nafion® not only plays the role as an electronic insulator and gas barrier but also allows rapid proton transport and supports high current densities. In order to maintain the high proton conductivity of Nafion®, humidified H2 and O2 are passed through the two electrodes. However, water gets easily condensed in the electrodes. This process, called water-flooding, degrades the performance of PEMFC. Hence, a hydrophobic agent, viz. polytetrafluoroethylene (PTFE), is normally incorporated into the electrodes to prevent this phenomenon. Since it is electrically insulating, the incorporation of PTFE increases the internal resistance of the fuel cell. In this study, we successfully demonstrate a PEMFC with catalyst layer comprising of low loading of platinum nanoparticles (0.05 mg cm−2) supported by a directly grown micro-porous carbon nanotube (CNT) layer without incorporation of PTFE, (Pt/MPL-CNT). This cell performs well without exhibiting water-flooding. A commercial electrode, the catalyst layer of which was supported by a conventional micro-porous layer of carbon black mixed with 30 w.t.% PTFE, was used as a reference (Pt/PTFE-MPL-CB). In the single cell tests, PEMFCs with 0.05 mg cm−2Pt/MPL-CNT and 0.25 mg cm−2Pt/PTFE-MPL-CB were used at the cathodes. These cells yielded maximum power densities of 902 mW cm−2 and 824 mW cm−2, respectively, at 70 °C when operated with H2/O2. Notably, the Pt-loading of Pt/MPL-CNT cell is one-fifth of that of Pt/PTFE-MPL-CB, but the former still outperforms the latter. It is shown that the directly grown micro-porous CNT layer has low electronic resistance and is intrinsically hydrophobic, which are the properties responsible for the high performance obtained here.

Graphical abstract: High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell

Supplementary files

Article information

Article type
Paper
Submitted
25 Sep 2010
Accepted
10 Nov 2010
First published
04 Jan 2011

J. Mater. Chem., 2011,21, 2512-2516

High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell

H. Du, C. Wang, H. Hsu, S. Chang, S. Yen, L. Chen, B. Viswanathan and K. Chen, J. Mater. Chem., 2011, 21, 2512 DOI: 10.1039/C0JM03215H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements