Issue 42, 2010

Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres

Abstract

In this study, thermoplastic polyurethane (TPU) fibres containing multi-walled carbon nanotubes (MWNTs) and fabricated via an extrusion process were demonstrated to possess a tuneable level of electrical conductivity. A simple approach based on the time–temperature superposition applied to the electrical conductivity of carbon nanotube (CNT) percolating in a thermoplastic polyurethane (TPU) melt was also developed to predict the conductivity of the nanocomposite fibres. The observation of Arrhenius dependence of zero-shear viscosity and the assumption of simple inverse proportionality between the variation of conductivity, due to network formation, and viscosity allow a universal plot of time variation of conductivity to be composed, which is able to predict the conductivity of the extruded fibres. The same TPU/CNT fibres were also demonstrated to possess good strain sensing abilities, which makes them good candidates for applications in smart textiles.

Graphical abstract: Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres

Article information

Article type
Paper
Submitted
09 Jun 2010
Accepted
09 Aug 2010
First published
10 Sep 2010

J. Mater. Chem., 2010,20, 9449-9455

Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres

E. Bilotti, R. Zhang, H. Deng, M. Baxendale and T. Peijs, J. Mater. Chem., 2010, 20, 9449 DOI: 10.1039/C0JM01827A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements