Issue 34, 2010

Surfactant-free synthesis of pure anatase TiO2nanorods suitable for dye-sensitized solar cells

Abstract

A non-aqueous, solvothermal method was applied to the synthesis of TiO2 nanorods in pure anatase crystal phase using Ti(IV)-isopropoxide. The use of benzyl alcohol as both solvent and reactant was investigated in combination with the addition of acetic acid to the reaction mixture. Various values of the AcOH : Ti(OiPr)4 molar ratio were realized in the synthesis and tested in order to obtain a significant dimensional and morphological control over the resulting TiO2 nanostructures, as well as to devise a simple and scalable synthetic protocol. On the basis of the experimental results, a substantially modified version of the well-established “benzyl alcohol route” was then designed and developed. X-ray diffractometry and transmission electron microscopy revealed that monodisperse anatase nanorods having a length of about 13–17 nm and a diameter of 5 nm can be obtained when AcOH and Ti(OiPr)4 are reacted in comparable proportions. Investigation of the characteristic parameters of dye-sensitized solar cells fabricated using the synthesized nanorods as photoanode revealed a power conversion efficiency of about 7.5% corresponding to an improvement of 28% with respect to a commercial spheroidal nanotitania (P25) based reference device.

Graphical abstract: Surfactant-free synthesis of pure anatase TiO2 nanorods suitable for dye-sensitized solar cells

Supplementary files

Article information

Article type
Paper
Submitted
22 Apr 2010
Accepted
28 May 2010
First published
30 Jul 2010

J. Mater. Chem., 2010,20, 7248-7254

Surfactant-free synthesis of pure anatase TiO2 nanorods suitable for dye-sensitized solar cells

G. Melcarne, L. De Marco, E. Carlino, F. Martina, M. Manca, R. Cingolani, G. Gigli and G. Ciccarella, J. Mater. Chem., 2010, 20, 7248 DOI: 10.1039/C0JM01167C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements