Issue 22, 2010

Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions

Abstract

Mesoporous carbon with a narrow pore size distribution centered at about 9 nm, which was prepared by self assembly of block copolymer and phloroglucinol-formaldehyde resin via the soft-template method, was activated by CO2 and potassium hydroxide (KOH). The effects of activation conditions, such as the temperature, activation time, and mass ratio of KOH/C, on the textural properties of the resulting activated mesoporous carbons were investigated. Activated mesoporous carbons exhibit high BET specific surface areas (up to ∼ 2000 m2 g−1) and large pore volumes (up to ∼ 1.6 cm3 g−1), but still maintain a highly mesoporous structure. Heat treatment of mesoporous carbons by CO2 generally requires a moderate to high extent of activation in order to increase its BET surface area by 2–3 times, while KOH activation needs a much smaller degree of activation than the former to reach an identical surface area, ensuring high yields of activated mesoporous carbons. In addition, KOH activation allows a controllable degree of activation by adjusting the mass ratio of KOH/C (2–8), as evidenced by the fact that surface area and pore volume increase with the mass ratio of KOH/C. The electrosorption properties of activated mesoporous carbons were investigated by cyclic voltammetry in 0.1 M NaCl aqueous solutions. Upon activation, the electrosorption capacitance of activated mesoporous carbons was greatly enhanced.

Graphical abstract: Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions

Article information

Article type
Paper
Submitted
09 Dec 2009
Accepted
03 Feb 2010
First published
04 Mar 2010

J. Mater. Chem., 2010,20, 4602-4608

Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions

X. Wang, J. S. Lee, C. Tsouris, D. W. DePaoli and S. Dai, J. Mater. Chem., 2010, 20, 4602 DOI: 10.1039/B925957K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements