Issue 24, 2010

Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy

Abstract

With the advent of regulated, surface initiated polymerizations, specifically using controlled radical approaches, the choice of polymerizable compounds and the control over grafting chemistry have seen tremendous advancement. New analysis techniques and approaches are now needed to characterize these brushes with molecular precision. In addition, spatial structure control at the nanoscale, and tuning of thickness as well as composition of the brushes, have become feasible by utilizing recently developed enabling molecular nanofabrication approaches. Atomic force microscopy (AFM) is a powerful analytical tool for the characterization of polymer brushes, as well as for the fabrication of brush structures across the length scales. AFM has been used to investigate polymer brushes in a number of ways including imaging surface morphologies, measuring brush thickness, estimating the value of number average molar mass, observing stimulus responsive behavior and probing surface mechanical properties. In addition, AFM based methods such as nanoscratching, dip-pen nanolithography (DPN) and scanning probe oxidation (SPO) have been also employed for the nanofabrication of patterned polymer brushes. This feature article gives a short account of this field and highlights recent advances.

Graphical abstract: Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy

Article information

Article type
Feature Article
Submitted
20 Nov 2009
Accepted
23 Jan 2010
First published
11 Mar 2010

J. Mater. Chem., 2010,20, 4981-4993

Characterization and molecular engineering of surface-grafted polymer brushes across the length scales by atomic force microscopy

X. Sui, S. Zapotoczny, E. M. Benetti, P. Schön and G. J. Vancso, J. Mater. Chem., 2010, 20, 4981 DOI: 10.1039/B924392E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements