Issue 18, 2010

Synthesis and characterization of the interpenetrated MOF-5

Abstract

MOF-5 is an important metal–organic framework and has been intensely studied, especially in its hydrogen storage properties. In this study, we obtained the interpenetrated MOF-5 materials (MOF-5-int) using N,N′-dimethylformamide (DMF) or N,N′-diethylformamide (DEF) as solvents. The Langmuir surface area of MOF-5-int determined by N2 adsorption is 950–1100 m2 g−1, much lower than the non-penetrated MOF-5 (3000 m2 g−1). However, it can store 1.54–1.82 wt% by volumetric method hydrogen at 77 K and 1 atm, which is higher than the amount stored by the non-penetrated MOF-5. The MOF-5-int was also characterized by XRD-powder diffraction, thermogravimetric analysis (TGA), nitrogen adsorption/desorption analysis, scanning electron microscope (SEM) and X-ray single-crystal structure diffraction. In addition, we found grinding greatly facilitates the decomposition of the MOF-5-int material by H2O to a nonporous phase ZnBDC·xH2O (within 2–5 min, BDC = 1,4-benzenedicarboxylate), even under low humidity (30%), which calls for careful handling of the MOF-5 material. The effects of the water content, reaction time, reaction temperature, molar ratio of Zn(NO3)2 to H2BDC, addition of H2O2, rapid stirring and dilution on the synthesis of MOF-5-int were studied and the synthetic conditions were optimized. Moreover, Hafizovic et al. (J. Am. Chem. Soc., 2007, 129, 3612) found the intensity ratio of the powder XRD peak at 9.7° to that at 6.8° (referred to as the R1 value) of MOF-5 can be used to predict its porosity. The lower the intensity ratio, the more porous it is. In this study, we showed that MOF-5-int can have a very low R1 value but also a low porosity. The low specific surface area (SSA) is mainly due to its interpenetrated structure instead of the entrapped zinc species or the mesopores in the material, as previously proposed in the literature, and associated with the characteristic, very strong peak at 13.8° in its XRD-powder diffraction pattern. A high R2 value (the ratio of the intensity of the peak at 13.8° to that at 6.8°) suggests an interpenetrated structure, especially when the R1 value is low. In addition, we found that although entrapped ZnO or solvent molecules can increase the R1 value, and a low R1 value implies no zinc species or solvent molecules entrapped in the MOF-5 framework, a high R1 value does not necessarily suggest the presence of entrapped molecules.

Graphical abstract: Synthesis and characterization of the interpenetrated MOF-5

Supplementary files

Article information

Article type
Paper
Submitted
28 Oct 2009
Accepted
01 Feb 2010
First published
12 Mar 2010

J. Mater. Chem., 2010,20, 3758-3767

Synthesis and characterization of the interpenetrated MOF-5

B. Chen, X. Wang, Q. Zhang, X. Xi, J. Cai, H. Qi, S. Shi, J. Wang, D. Yuan and M. Fang, J. Mater. Chem., 2010, 20, 3758 DOI: 10.1039/B922528E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements