Issue 15, 2005

High-throughput methods to optically functional oxide and oxide–nitride materials

Abstract

High-throughput methods have been used for the synthesis and preliminary characterisation of optically functional ceramic oxide and oxidenitride materials on an alumina substrate. Gel routes have been investigated for their viability when used with a Teflon masking system. Three different systems and deposition methodologies have been studied. The first system uses a polymer complex method based on citric acid and ethylene glycol in aqueous media to create arrays of the formula Ca1−xSrxZr1−yCryO3 (0 ≤ x ≤ 1, in 0.2 steps; 0 ≤ y ≤ 0.24, in 0.03 steps) annealed at temperatures of 600, 800, 1000 and 1200 °C. A metal alkoxide sol–gel method using an acetic acid–acetic anhydride solvent has been employed to produce arrays of oxides and oxidenitrides with the general formulae SrZr1−xTaxO3 and SrZr1−xTaxO2+xN1−x (0 ≤ x ≤ 1, in 0.2 steps). Arrays of aluminium-doped zinc oxides, as potential transparent conducting oxides, have been produced through hydrolysis of a zinc acetate–ethylene glycol precursor using aluminium nitrate solutions while tin-doped indium oxides were obtained by direct evaporation and calcination of indium and tin solutions. Conversion of these oxide arrays to oxidenitride arrays was carried out by reaction of the deposited SrZr1−xTaxO3 materials under high purity flowing ammonia. Initial characterisation of arrays has been undertaken using powder X-ray diffraction, scanning electron microscopy and UV–vis spectroscopy.

Graphical abstract: High-throughput methods to optically functional oxide and oxide–nitride materials

Article information

Article type
Paper
Submitted
12 Oct 2004
Accepted
27 Jan 2005
First published
11 Feb 2005

J. Mater. Chem., 2005,15, 1528-1536

High-throughput methods to optically functional oxide and oxidenitride materials

S. J. Henderson, J. A. Armstrong, A. L. Hector and M. T. Weller, J. Mater. Chem., 2005, 15, 1528 DOI: 10.1039/B415808C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements