Issue 10, 2001

Abstract

Sol–gel polymerization of tetraethoxysilane (TEOS) was carried out in the organogel phase consisting of cholesterol-based gelators (neutral 1 and cationic 2). TEOS polymerization in neutral 1 + MeCO2H gel resulted in the conventional granular silica whereas that in cationic 2 + MeCO2H gel yielded the novel mesoporous silica with a tubular structure. SEM and TEM observations and additive effects established that the organogel fibers act as a template in the TEOS polymerization process to yield the hollow silica fibers and that the electrostatic interaction plays a crucial role in adsorption of anionic oligomeric silica particles onto the cationic organogel fiber surface. Thus, the tubular structure is created after combustion of the gelators by calcination. Very interestingly, when TEOS polymerization was carried out in the 1 + 2 mixed organogel, fibrous silica with a right-handed “helical” structure was created. This phenomenon appeared only in the range of 2/(1 + 2) = 5–15 mol%. Since the higher-order helical structure is characteristic of supramolecular assemblies of “chiral” organic compounds, it is suggested that the chirality in the organogel fibers is successfully transcribed into the inorganic silica fibers. Thus, the concept presented in this paper describes a novel template effect and should be broadly applicable to the design of “supramolecular” silica materials useful for catalysts, memory storage, replication, etc.

Graphical abstract: Organogels are useful as a template for the preparation of novel helical silica fibers

Article information

Article type
Paper
Submitted
19 Mar 2001
Accepted
19 Jun 2001
First published
08 Aug 2001

J. Mater. Chem., 2001,11, 2412-2419

Organogels are useful as a template for the preparation of novel helical silica fibers

Y. Ono, K. Nakashima, M. Sano, J. Hojo and S. Shinkai, J. Mater. Chem., 2001, 11, 2412 DOI: 10.1039/B102550N

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements