Issue 1, 2001

Abstract

A range of methods, based on Monte Carlo and lattice dynamics simulations, are presented for the calculation of the thermodynamic properties of solid solutions and phase diagrams. These include Monte Carlo simulations with the explicit interchange of cations, the use of the semigrand-canonical ensemble and configurational bias techniques, hybrid Monte Carlo/molecular dynamics, and a new configurational lattice dynamics technique. It is crucial to take account of relaxation of the local atomic environment and vibrational effects. Examples studied are (i) the enthalpy and entropy of mixing, the phase diagram and the spinodal of MnO/MgO. The available experimental data disagree widely for this system; (ii) the enthalpy of mixing of CaO/MgO, where the size mismatch between the cations is considerably larger than in (i); (iii) the postulated high-pressure orthorhombic to cubic phase transition in (Mg,Mn)SiO3 perovskite, where we show that impurity cations can have a much larger effect than that expected from a mean-field treatment or linear interpolation between end-member compounds.

Article information

Article type
Paper
Submitted
19 May 2000
Accepted
09 Jun 2000
First published
05 Oct 2000

J. Mater. Chem., 2001,11, 63-68

Ab initio calculation of phase diagrams of ceramics and minerals

N. L. Allan, G. D. Barrera, M. Yu. Lavrentiev, I. T. Todorov and J. A. Purton, J. Mater. Chem., 2001, 11, 63 DOI: 10.1039/B002951N

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements